Silica Cladding Quantum Dot Synthesis

Our core (CdSe) of Quantum Dot (QD) was synthesized by precipitation reaction first and then the desired multishell CdS/Zn0.5Cd0.5S/ZnS growth was achieved by successive ion layer adhesion and reaction (SILAR) technique. The as-synthesized QDs were capped with octadecylamine (ODA). They had an averaged diameter of 8nm and measured fluorescent quantum yield of about 50%.

A thick shell of silica was subsequently grown onto the QD utilizing water-in-oil (W/O) microemulsion growth technique, which has been widely adopted to synthesize silica colloidal particles.

 

silica QDs

Silica-cladding approaches have recently been initiated on QDs as well as on magnetic nanoparticles, but issues related to particle size control and encapsulation uniformity are reported to be considerable challenges.  However, by our technique, we have achieved significant improvement in the final particle size distribution, as seen from the transmission electron microscope (TEM) images where up to 95% of the particles have single QD core precisely positioned at the center. One key to this advance is the choice of the surfactant NP-12 with relatively large unit length polyoxyethylene hydrophilic group. As NP-12 helps to reinforce the stability of the micelle against ethanol, a by-product of the reaction, we could tune the final particle size up to 220nm in a one-pot synthesis without generating secondary silica nuclei.

silicaQD quality

Silica-encapsulated II-VI semiconductor colloidal QDs. a-d, Transmission electron microscope images of the synthesized silica-clad QDs with various total particle diameters of 28nm (a), 75nm (b), 95nm (c), and 180nm (d), obtained via microemulsion synthesis with NP-5 (a) and NP-12 (b-d) as the surfactants, respectively. Single QDs of about 8nm in diameter are visible at the core of the composite particles, appearing as small dark dots. The scale bars in the images correspond to 20nm (a) and 100nm (b-d). e,f, the synthesized silica-clad QDs (right, 180nm diameter) in cyclohexance under ambient (e) and UV (f) exposures. Bare QD controls (left) with similar concentration was used as a reference. g, photoluminescence spectra of the silica-clad QDs in cyclohexane (blue) and in ethanol (green), in comparison to the bare QD control (red), under the excitation at 380nm.

Important for applications, the optical quality of the QDs is largely preserved after thick silica encapsulation. The photoluminescence (PL) spectrum of the QDs after silica encapsulation shows clean QD ground state exciton emission signature centered around 613nm (slightly red-shifted by about 3nm compared to the “bare” QD control), without introducing any noticeable impurity emission background. The PL efficiency of the silica-clad QDs is nearly unchanged if they are dispersed in non-polar solvent; however, it drops by about 60% upon transferring into ethanol.

Single-photon source arrays were developed based on silica cladding QDs

 

 

Bitnami